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Abstract: In the presence of AIBN, allylstannanes bearing an electron-withdrawing group at the B-
position easily reacted with terminal and electron-deficient internal alkynes to give {-allyl-
substituted vinylstannanes in moderate to good yields. The allylstannylation proceeds with anti
addition exclusively. Copyright © 1996 Elsevicr Science Ltd

Carbometallation of alkenes and alkynes is one of the most useful reactions for the stereo-controlled
construction of organic molecules, because the carbometallation reaction usually proceeds with high regio-
and stereoselectivity, and the resultant organometallics react with various electrophiles with retention of the
stereochemical integrity.! Previously, we have reported that allylstannanes bearing an electron-withdrawing
group at the B-position easily react with electron-deficient alkenes to introduce both allyl and stannyl groups
to the carbon-carbon double bond.2 This allylstannylation reaction is a novel type of carbometallation
reaction via a radical process. We report herein that several alkynes undergo the allylstannylation to give
vinylstannanes with high regio- and stereoselectivity.3

We first carried out the reaction of ethyl propiolate (1) with the allylstannanes 2a-f (eq. 1 and Table 1).
Treatment of 1 with 4 equivalents of the allylstannane 2a (R = H) in the presence of AIBN gave a mixture of
the or-allyl-B-stannyl-substituted acrylate 3a (anti adduct, 12% yield) and the (2)-B-stannylacrylate 6 (1.4%
yield) after purification by silica-gel column chromatography. The formation of 4a and Sa, stereo- and
regioisomers of 3a, was also observed although their yields were fairly low (<0.5% yield).4:5 On the other
hand, B-substituted allylstannanes exhibited higher reactivity than 2a. In particular, the introduction of an
electron-withdrawing group at the B-position significantly enhances the reactivity. Thus, the allylstannanes
2e (R = COOMe) and 2f (R = CN) smoothly added to 1 to give the anti adducts 3e and 3f as major products

in 70% and 74% isolated yields, respectively.
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Table 1. Allylstannylation of ethyl propiolate with various allylstannanes®

Allylstannane Time Yield/ %
Entry R /h 3be 4+5 4:5°
1 H (2a) 4 122 <1k 2:1
2 Me (2b) 2 27f <2 3:1
3 SiMe;  (2¢) 2 388 <2 1:1
4 Ph (2d) 1 61 <5 1:2
5 COOMe (2e) 1 708 <15 11:4
6 CN 2n 1 748 <12 11:1

@Reaction conditions: alkyne:allylstannane: AIBN=1:4:0.05 (molar ratio), benzene (5 ml per 1 mmol of alkyne), 80
°C. Plsolated yield of a pure product except for entries 1-2. “The configurations of 3 and 4 were assigned by NOE
experiments and/or chemical shifts of the olefinic protons. See ref. 4. 9A mixture of the vinylstannanes 4, 5 and
unidentified impurities was obtained after purification of silica-gel column chromatography. See ref. 5. The
assignment of the geometry of § was based on the coupling constant between the olefinic proton and 11955 or
1178n, See ref. 6. ¢Determined by 'H NMR analysis. fincluding (Z)-6. The yield was estimated by 'H NMR
analysis. 8The allylstannane was recovered in 62-74% based on the initial amount. Mncluding (E)-6.

In order to investigate the limitation of the allylstannylation, a variety of alkynes were subjected to the
reaction with 2e (eq. 2 and Table 2). Phenylacetylene (7a) efficiently reacted with 2e to give the
vinylstannane 8a in 94% yield without other isomers. The reaction of 1-dodecyne (7b) also gave only 8b
among the expected destannylated products, but isolation of 8b from the reaction mixture including 2e and
its dimer was a laborious process.2 Although the yield of 8b was estimated to be 63% by the !H NMR
analysis of the crude product, it was isolated in only 44% yield (>98% pure) by distillation. Destannylation
of the crude product with HCI-CH3CN provided the 1,4-diene 11 in 70% isolated yield. The reactivity of 7b
is in sharp contrast to that of 1-decene, which was insensitive to 2e under the same reaction conditions.2.7
The present reaction tolerates the presence of a hydroxyl group as shown in some other radical reactions.8.9
3-Butyn-1-ol (7¢) as well as 7a and 7b was converted to a single isomer of the allylstannylated products,
while the use of 3-butyn-2-ol (7d) resulted in the formation of two regioisomers (8d and 10d) and the -
lactone 12.9 Protection of the hydroxyl group of 7d improved the regioselectivity and suppressed the
lactonization (entry 5).

Internal alkynes conjugated with an ester group also underwent the allylstannylation. The reaction of
methyl 2-heptynoate (7f) gave the anti adducts 8f and 10f with a 1:2 regioselectivity along with the allyl-
vinylstannane 13.10.11 Similar regioselective addition of a stannyl group to the carbon o to the ester group
was also observed in the hydrostannylation of 7f with Bu3SnH and AIBN.12 When methyl 3-phenyl-2-
propynoate (7g) was employed, the selectivity increased to more than 40:1. Dimethyl acetylene-
dicarboxylate (7h), a highly electron-deficient alkyne, also underwent the allylstannylation in high
efficiency in an anzi addition mode.!3 In contrast, phenyl- and alkyl-substituted internal alkynes were much
less reactive to 2e than the electron-deficient alkynes (entries 9 and 10).
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Table 2. Allylstannylation of various alkynes with allylstannane 2e® ”'ng% M
e
Alk Ti
Entry Rl yneR2 ;mhe Products (yield / %)*° i{
1 H Ph (7a) 1 8a (94)
2 H nCygHy (Tb) 6  8b(44),11(70)° BusS o
3 H CH,CH,OH (7¢c) 2 8¢c(69) =
4 H CH(OH)CH; (7d) 2  8d+10d (39, 86:14)° + 12 (<4)
5 H CH(OAC)CH; (Te) 2 8e(62) 12
6 Bu COOMe (7 2  S8£(15)+10f(38) + 13 (7, §7:13)¢ MeOO
7 Ph  COOMe (75 1 8g(2)+10g(84) -
8 MeOOC COOMe (Th) 1  8h(85)+ 9h (trace) 2
9 Bu Ph T 6 819 Bu/ ic 0OMe
10 n-CsHy;y n-CsHy; (7)) 24 No reaction. 13

aSee footmote a in Table 1. PThe configuration of product was assigned by NOE experiments and/or the coupling constant
between 'H and 1198n or 117Sn. See ref. 10 and 13 regarding the assignment of the configurations of 8f, 10f-g, 8h, and 9h.
CIsolated yield. 9See the text. CIsomeric ratio, 8d:10d. fIncluding unidentified impurities. 8Isomeric ratio, (£)-13:(2)-13.

A plausible mechanism for the allylstannylation of alkynes is illustrated in Scheme 1. First, a stannyl
radical generated from an allylstannane 2 by the action of AIBN adds to an alkyne reversibly (step (1)).
Then, the resulting vinyl radicals 14 and 15 react with 2 to afford allylstannylated products and regenerate
the stannyl radical (step (2)). As described above, the use of an electron-withdrawing group as R is essential
for successful allylstannylation. This is probably due to the acceleration of the step (2) by the electron-
withdrawing group, since carbon radicals including alkyl and vinyl radicals are generally nucleophilic.!.82

Scheme 1. Mechanism for the Allylstannylation

(1) BusS SnBug (2) Bu3Si SnBug
R'—=—R? + «SnBuz =— r>=- + R
15 —'SnBua

In the case of terminal alkynes (R! = H), the stannyl radical selectively attacks the terminal acetylenic
carbon to avoid the steric repulsion from the substituent R2. The formation of the regioisomers 5 and 10d in
the reactions of 1 and 7d indicates that the oxygen functionalities such as the ester and hydroxyl groups
facilitate the addition of the stannyl radical to the internal acetylenic carbon adjacent to them. The directing
effect was distinctly observed in the allylstannylation of the internal alkynes 7f and 7g. However, the origin
of the directing effect remains obscure at present. The stereochemistry of the products is mainly determined
in the step (2).14 The attack of 2 to the radical center of 14 or 15 takes place at the opposite side to the
stannyl group due to its steric hindrance, and therefore, the allylstannylation proceeds in an anti fashion

predominantly. 82,15

In conclusion, we have developed a new method for the stereoselective synthesis of di- and tri-
substituted vinylstannanes. Since the stannyl group of vinylstannanes can be converted to various
substituents with stereochemical retention, the present method serves for the stereoselective construction of
multi-substituted and highly functionalized alkenes.16
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